AQA

AQA Qualifications

A-LEVEL

 ChemistryCHEM2 Chemistry in Action
Mark scheme

2420
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]\begin{tabular}{|c|c|c|c|}
\hline Question \& Answers \& Mark \& Additional Comments/Guidance \\
\hline 1a) \& \begin{tabular}{l}
more (electron) shells / (outer) electrons further from the nucleus / larger atoms / more shielding \\
so weaker attraction of nucleus/protons for (outer) electrons
\end{tabular} \& 1
1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { If ‘molecules' mentioned CE }=0 \\
\& \text { It }=\mathrm{Ba}
\end{aligned}
\] \\
Mark independently \\
ALLOW energy levels for shells \\
Both ideas must be comparative \\
NOT hold/pull/bonded for 'attraction' idea of nucleus or protons must be clear \\
ALLOW M2 if electrons implied from mention in M1 ALLOW converse if it is clear that answer refers to Ca
\end{tabular} \\
\hline 1b) \& \begin{tabular}{l}
White solid / white ash \\
Bright light / white light
\[
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}
\]
\end{tabular} \& \& ALLOW 'white smoke/powder' IGNORE 'product' NOT ppt IGNORE fumes IGNORE tube/glass goes black ALLOW glow/flame for light IGNORE state symbols \\
\hline 1c) \& \begin{tabular}{l}
\(\mathrm{BaSO}_{4}\) is insoluble but \(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\) is soluble \\
OR \\
\(\mathrm{BaSO}_{4}\) precipitates but \(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\) product(s) of second reaction is soluble/remains in solution \\
OR \\
\(\mathrm{BaSO}_{4}\) is insoluble but no reaction occurs in second case
\[
\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})
\]
\end{tabular} \& 1

1 \& | NOT just 'no observation' in second case |
| :--- |
| Comparison of solubilities must be implied |
| NOT Barium is soluble/insoluble Correct state symbols required |

\hline Total \& \& 7 \&

\hline
\end{tabular}

Question	Answers	Mark	Additional Comments/Guidance
2a)	The enthalpy / heat energy change when 1 mol (of a substance) is burned/reacts completely in oxygen with all reactants and_products in their standard states OR With all reactants and products in their normal states at $298 \mathrm{~K} /$ given temp \& 100 kPa	1 1 1	If enthalpy of formation definition given $\mathrm{CE}=\mathrm{O}$ NOT just 'energy' ALLOW alternatives for substance e.g. molecule/compound/element ALLOW reacts in excess oxygen ALLOW 'everything' for 'reactants and products' Penalise incorrect conditions if given ALLOW 'normal states under standard conditions'
2b)	$\Delta H=\Sigma \Delta H_{c}$ (reactants) $-\Sigma \Delta H_{c}$ (products) OR correctly and fully balanced cycle $\Delta H=[3(-394)+4(-286)]-(-2010)$ OR $\Delta H=-2326+2010$ $\Delta \mathrm{H}=-316\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ +316 scores 1 mark only	1 1 1	Correct answer scores 3 M2 also scores M1 IGNORE units Check for AE in working - can award M3 as ecf (error carried forward) from M2 if M2 not given due to $A E$

\begin{tabular}{|c|c|c|c|}
\hline 2c) \& \begin{tabular}{l}
\(\Delta \mathrm{H} /-1893=\Sigma \mathrm{B}\) (reactants) \(-\Sigma \mathrm{B}\) (products) \\
OR \\
\(\Delta H /-1893=\Sigma\) Bonds broken \(-\Sigma\) Bonds formed \\
OR
\[
\Delta \mathrm{H} /-1893=2 \mathrm{~B}(\mathrm{C}-\mathrm{C})+7 \mathrm{~B}(\mathrm{C}-\mathrm{H})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+41 / 2 \mathrm{~B}(\mathrm{O}=\mathrm{O})-6 \mathrm{~B}(\mathrm{C}=\mathrm{O})-8 \mathrm{~B}(\mathrm{O}-\mathrm{H})
\]
\[
-1893=2 B(C-C)+7(412)+360+463+41 / 2(496)-6(805)-8(463)
\] \\
OR
\[
-1893=2 B(C-C)+5939-8534
\] \\
OR
\[
-1893=2 B(C-C)-2595
\] \\
OR
\[
2 B(C-C)=702
\]
\[
\mathrm{B}(\mathrm{C}-\mathrm{C})=(+) 351\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
\]
\end{tabular} \& 1

1
1

1 \& | Correct answer gains 3 marks |
| :--- |
| M2 also scores M1 |
| May see no 463 in bonds broken and 7×463 in made (gives 5476-8071) |
| If NOT 351 check for AE. This would lose M2, but could gain M1 and M3 |
| (+)234 scores 1 (due to $3(\mathrm{C}-\mathrm{C})$) |
| NOT M3 from incorrect M2 unless incorrect M2 is due to $A E$ |
| IGNORE Units |
| If no other mark awarded then |
| ALLOW 1 if 5939 or 5476 or 8534 or 8071 seen |

\hline Total \& \& 9 \&

\hline
\end{tabular}

Question	Answers	Mark	Additional Comments/Guidance
3a) i.	$\mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+2 \mathrm{HCl}$	1	IGNORE state symbols ALLOW multiples
3a) ii.	(Free-)radical substitution	1	This answer only
3a) iii.	Initiation: $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$ $1^{\text {st }}$ Propagation step $^{\mathrm{Cl} \cdot+\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \bullet \mathrm{CHCl}_{2}+\mathrm{HCl}}$ $2^{\text {nd }} \mathrm{Propagation} \mathrm{step} \mathrm{CHCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+\mathrm{Cl} \cdot$ $\mathrm{Termination}^{2 \cdot \mathrm{CHCl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}}$	1	Penalise absence of dot once only

Question	Answers	Mark	Additional Comments/Guidance
4a)	OH AND alcohol	1	IGNORE hydroxy(I)

4d) i)	$\mathrm{S}=$ aldehyde/CHO AND T = carboxylic/COOH/CO2 ${ }_{2} \mathrm{H}$	1	
	T forms hydrogen bonds	1	
	(which are) stronger than / need more energy to break than forces between molecules/IMFs in S ora (or reverse argument)	1	If implication of breaking covalent bonds max M1 only
4d) ii	(No oxidation has occurred as..)	Any 2	Must have wavenumber range (or value within range) and bond or functional group to score each mark.
	(Still) contains peak at 3230-3550 cm-1 due to $\mathrm{O}-\mathrm{H} /$ alcohol		
	Does not contain peak at 2500-3000 cm-1 due to O-H/carboxylic acid		
	Does not contain peak at 1680-1750 cm-1 due to $\mathrm{C}=0$		
Total		13	

Question	Answers	Mark	Additional Comments/Guidance
5(a)(i)	curve drawn from origin with peak clearly lower and to right.	1	new curve crosses original once only, finishes above original and does not clearly curve up IGNORE relative areas
5(a)(ii)	(Relative areas under curves indicate) many (owtte) more molecules with E greater than or equal to Ea (at higher T) or reverse argument (large) increase in (number of) successful (owtte) collisions per unit time		ALLOW 'particles' IGNORE 'atoms' OR 'frequency of successful collisions'
5(b)(i)	Yield increases more moles/molecules (of gas) on left/fewer on right/3 on left 1 on right equilibrium shifts/moves (to right) to reduce pressure/oppose higher pressure	1 1 1	Yield decreases/stays the same CE $=0$ If not answered mark on No M3 if 'more moles on right' in M2 IGNORE 'favours' NOT just 'oppose the change' QoL means that M3 is only awarded if these ideas are clearly linked in one statement
5(b)(ii)	Higher T would increase rate but decrease yield/make less methanol OR Lower T decreases rate but increases yield; Chosen T is a compromise/balance (between rate and yield) owtte		If no mention of both rate AND (idea of) yield max 1
Total		8	

Question	Answers	Mark	Additional Comments/Guidance
6(a)	increasing atomic radius / shielding / number of shells / size (down group) or reverse argument decreasing attraction of nucleus/protons for shared (electron) pair / bond electrons	1	NOT 'molecules' NOT if attraction for single electron implied
6(b)(i)	electron acceptor / species that accepts electrons / species that gains electrons	1	NOT electron pair NOT just 'gain of electrons'
6(b)(ii)	chlorine 0 to -1 / oxidation state/number of chlorine decreases AND bromine -1 to 0 / oxidation state/number of bromine increases	1	penalise if oxidised for chlorine and/or reduced for bromine credit oxidation states if labelled on equation
6(c)(i)	$\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$	1	ALLOW SO ${ }_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$ ALLOW fractions/multiples IGNORE state symbols
6(c)(ii)	$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{(-)}$	1	ALLOW fractions/multiples IGNORE state symbols ALLOW $2 I^{-}-2 e^{(-)} \rightarrow I_{2}$

6(c)(iii)	$\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{l}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}$	1	ALLOW $\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2} \\ & \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}^{+}+8 \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2} \\ & \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2} \\ & 9 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{ll}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}+8 \mathrm{HSO}_{4}^{-} \\ & 9 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{NaI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}+8 \mathrm{NaHSO}_{4} \\ & \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{NaI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}+8 \mathrm{Na}^{+} \\ & 5 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}+4 \mathrm{SO}_{4}{ }^{2-} \\ & 5 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{NaI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}+4 \mathrm{Na}_{2} \mathrm{SO}_{4} \end{aligned}$
6(c)(iv)	'oxidising agent' box ticked	1	
6(c)(v)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaF} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HF} \\ & \mathrm{OR} \\ & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaF} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HF} \end{aligned}$	1	
6(c)(vi)	fluoride less powerful reducing agent (than iodide) OR fluoride less easily oxidised than iodide or reverse argument in either case	1	NOT general group VII trend statement NOT fluorine/F or iodine/l Must be comparative
6(d)(i)	$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{ClO}^{-} / \mathrm{HCl}+\mathrm{HOCl}$	1	ALLOW \rightarrow for \rightleftharpoons
6(d)(ii)	equilibrium shifts/moves left (producing) chlorine (which) is toxic/poisonous	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Mark independently
Total		13	

Question	Answers	Mark	Additional Comments/Guidance
7(a)(i)	$2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$	1	ALLOW multiples/fractions
7(a)(ii)	sulfuric acid/ $/ \mathrm{H}_{2} \mathrm{SO}_{4}$	1	ALLOW CaSO 4 ALLOW SO 3 IGNORE gypsum/plaster/ CaSO_{3}
7(b)(i)	$2 \mathrm{CH}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+4 \mathrm{H}_{2} \mathrm{O}$	1	ALLOW multiples/fractions ALLOW $2 \mathrm{CH}_{4}+31 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}+\mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
7(b)(ii)	$\mathrm{ZnO}+\mathrm{CO} \rightarrow \mathrm{Zn}+\mathrm{CO}_{2}$	1	ALLOW multiples/fractions IGNORE state symbols
7(c)(i)	$\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq})$	1	state symbols required
7(c)(ii)	environmental (2 from) no/less $\mathrm{CO}_{2} /$ greenhouse gases produced/reduced effect on global warming conserves resources/fossil fuels no/less SO_{2} /acid rain produced no/less global dimming/particulates no/less land scarring/mining/habitat damage/noise pollution economic (1 from) less energy/lower temp hence cheaper less labour hence cheaper	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	IGNORE CO IGNORE scrap iron is cheap 'cheaper' must be qualified NOT just less energy/labour
7(d)(i)	$\mathrm{TiO}_{2}+\mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4}+\mathrm{CO}_{2}$ $\mathrm{TiO}_{2}+2 \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4}+2 \mathrm{CO}$ $\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgCl}_{2}+\mathrm{Ti}$		ALLOW multiples/fractions
7(d)(ii)	forms (titanium) carbide		ALLOW makes product/Ti brittle
Total		11	

Question	Answers \quad Mar		Additional Comments/Guidance
8(a)	$\mathrm{NaOH} / \mathrm{KOH}$ reaction 1 = ethanolic/alcoholic AND reaction 2 = aqueous rxn 1 = base/proton acceptor rxn 2 = nucleophile/lone pair donor/electron pair donor (Base) Elimination M6 must show an arrow from the lone pair on the oxygen of a negatively charged hydroxide ion to a correct H atom M7 must show an arrow from a correct $\mathrm{C}-\mathrm{H}$ bond on C adjacent to the C of the $\mathrm{C}-\mathrm{Br}$ bond to a correct $\mathrm{C}-\mathrm{C}$ bond. Only award if an arrow is shown attacking the H atom of a correct adjacent C-H bond in M6 M8 is independent provided it is from their original molecule and shows curly arrow from $\mathrm{C}-\mathrm{Br}$ to Br	1 1	IGNORE OH ${ }^{-}$ NOT M1 if any mention of acidified $/ \mathrm{H}^{+}$in reagents or conditions IGNORE temp NOT ethanoic NOT nucleophilic ALLOW correct E1 mechanism IGNORE incorrect inorganic products If forming pent-2-ene can award M8 only even if arrows in mechanism correct If C chain length or halogen wrong in reactant or product max $2 / 3$

$\left.\left.\begin{array}{|c|l|l|l|}\hline & \begin{array}{l}\text { Same volume/amount of } \mathrm{AgNO}_{3} \text { (aq) added to same volume/amount/no. of drops of } \\ \text { haloalkane (in beaker/flask) in each experiment } \\ \text { same temp OR same }\left[\mathrm{AgNO}_{3}\right] \text { each time } \\ \text { record time to measure sensible observation about the amount of } \mathrm{AgCl} \text { ppt }\end{array} & 1 & \begin{array}{l}\text { both volume references needed } \\ \text { IGNORE inappropriate volumes }\end{array} \\ \text { 8(c) } & \begin{array}{l}1\end{array} & \begin{array}{l}\text { Rate = amount/time OR proportional to 1/time OR reference to shorter time = higher } \\ \text { rate/longer time = lower rate }\end{array} & 1\end{array} \right\rvert\, \begin{array}{l}\text { e.g. first appearance of ppt / ppt obscures mark } \\ \text { /reading on a colorimeter } \\ \text { IGNORE colour of ppt } \\ \text { ALLOW silver mirror } \\ \text { NOT reference to same time if describing } \\ \text { method based on timing how long (for ppt to } \\ \text { form) } \\ \text { ALLOW gravimetric method based on same } \\ \text { time for each experiment } \\ \text { ALLOW greater mass = higher rate if } \\ \text { gravimetric method }\end{array}\right]$

Question	Answers	Mark	Additional Comments/Guidance
9(a)	electrophilic addition Major product/propan-2-ol formed via most stable carbocation/carbonium ion secondary carbocation/carbonium ion more stable (than primary) or reverse argument	1 1 1 1 1 1 1	M 2 = curly arrow from $\mathrm{C}=\mathrm{C}$ towards H of $\mathrm{H}-\mathrm{O}$ on 'their' sulfuric acid M3 = curly arrow to break $\mathrm{H}-\mathrm{O}$ Penalise incorrect dipole/full charges M4 = intermediate M5 = correct anion, lone pair on correct O and curly arrow from that lone pair to $\mathrm{C}+$ on their carbocation IGNORE position of minus sign unless displayed structure IGNORE product M6 for idea of carbocation stability This statement gets M6 and M7 NOT stability of alcohols
9(b)	Hot/High T (and High P) (SiO_{2} coated in) phosphoric acid (catalyst) advantages of fermentation - Low(er) T and P / lower energy use - less use of non-renewable fossil fuels/renewable/sustainable (resources) - low(er) equipment/plant/capital costs disadvantages of fermentation - slow(er) reaction - low atom economy - impure product/extra purification/distillation required - Batch process/labour intensive/difficult to automate - Land used for sugar crops (so not available for food crops)	1 1 1 1 1 1	ALLOW 200-450 C/473-723 K (Quoted NOT (aq) IGNORE carbon neutral max 2 IGNORE low yield $\max 2$
Total		13	

General principles applied to marking CHEM2 papers by CMI+ (June 2016)

It is important to note that the guidance given here is generic and specific variations may be made at individual standardising meetings in the context of particular questions and papers.
Basic principles

- Examiners should note that throughout the mark scheme, items that are underlined are required information to gain credit.
- Occasionally an answer involves incorrect chemistry and the mark scheme records CE $=0$, which means a chemical error has occurred and no credit is given for that section of the clip or for the whole clip.

A. The "List principle" and the use of "ignore" in the mark scheme

If a question requires one answer and a candidate gives two answers, no mark is scored if one answer is correct and one answer is incorrect. There is no penalty if both answers are correct.
N.B. Certain answers are designated in the mark scheme as those which the examiner should "Ignore". These answers are not counted as part of the list and should be ignored and will not be penalised.

B. Incorrect case for element symbol

The use of an incorrect case for the symbol of an element should be penalised once only within a clip.
For example, penalise the use of "h" for hydrogen, "CL" for chlorine or "br" for bromine.
C. Spelling

In general

- The names of chemical compounds and functional groups must be spelled correctly to gain credit.
- Phonetic spelling may be acceptable for some chemical terminology.
N.B. Some terms may be required to be spelled correctly or an idea needs to be articulated with clarity, as part of the "Quality of Language" (QoL) marking. These will be identified in the mark scheme and marks are awarded only if the QoL criterion is satisfied.

D. Equations

In general

- Equations must be balanced.
- When an equation is worth two marks, one of the marks in the mark scheme will be allocated to one or more of the reactants or products.

This is independent of the equation balancing.

- State symbols are generally ignored, unless specifically required in the mark scheme.

E. Reagents

The command word "Identify", allows the candidate to choose to use either the name or the formula of a reagent in their answer. In some circumstances, the list principle may apply when both the name and the formula are used. Specific details will be given in mark schemes.

The guiding principle is that a reagent is a chemical which can be taken out of a bottle or container. Failure to identify complete reagents will be penalised, but follow-on marks (e.g. for a subsequent equation or observation) can be scored from an incorrect attempt (possibly an incomplete reagent) at the correct reagent. Specific details will be given in mark schemes.
For example, no credit would be given for

- the cyanide ion or CN^{-}when the reagent should be potassium cyanide or KCN ;
- the hydroxide ion or OH^{-}when the reagent should be sodium hydroxide or NaOH ;
- the $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$ion when the reagent should be Tollens' reagent (or ammoniacal silver nitrate). In this example, no credit is given for the ion, but credit could be given for a correct observation following on from the use of the ion. Specific details will be given in mark schemes.

In the event that a candidate provides, for example, both KCN and cyanide ion, it would be usual to ignore the reference to the cyanide ion (because this is not contradictory) and credit the KCN. Specific details will be given in mark schemes.

F. Oxidation states

In general, the sign for an oxidation state will be assumed to be positive unless specifically shown to be negative.
G. Marking calculations, such as those involving enthalpy changes

In general

- The sign for an enthalpy change will be assumed to be positive unless specifically shown to be negative.
- A correct answer alone will score full marks unless the necessity to show working is specifically required in the question.
- A correct numerical value with the wrong sign will usually score only one mark

All other values gain no credit except

- Two marks can be awarded for correct chemistry with an arithmetic error.
- One mark can be awarded for a correct mathematical statement (or cycle) for the method.

H. Organic reaction mechanisms

Curly arrows should originate either from a lone pair of electrons or from a bond.
The following representations should not gain credit and will be penalised each time within a clip.

For example, the following would score zero marks

When the curly arrow is showing the formation of a bond to an atom, the arrow can go directly to the relevant atom, alongside the relevant atom or more than half-way towards the relevant atom.
In free-radical substitution

- The absence of a radical dot should be penalised once only within a clip.
- The use of double-headed arrows or the incorrect use of half-headed arrows in free-radical mechanisms should be penalised once only within a clip
In mass spectrometry fragmentation equations, the absence of a radical dot on the molecular ion and on the free-radical fragment would be considered to be two independent errors and both would be penalised if they occurred within the same clip.

I. Organic structures

In general

- Displayed formulae must show all of the bonds and all of the atoms in the molecule, but need not show correct bond angles.
- Bonds should be drawn correctly between the relevant atoms.

For example, if candidates show the alcohol functional group as $\mathrm{C}-\mathrm{HO}$, they should be penalised on every occasion.

- Latitude should be given to the representation of $\mathrm{C}-\mathrm{C}$ bonds in structures, given that $\mathrm{CH}_{3}-$ is considered to be interchangeable with $\mathrm{H}_{3} \mathrm{C}-$ even though the latter would be preferred.
- Poor presentation of vertical $\mathrm{C}-\mathrm{CH}_{3}$ bonds or $\mathrm{C}-\mathrm{NH}_{2}$ bonds should not be penalised. For the other functional groups, such as OH and -CN , the limit of tolerance is the half-way position between the vertical bond and the relevant atoms in the attached group. By way of illustration, the following would apply

| (a) | (b) |
| :---: | :---: | :---: |
| allowed | |

- In most cases, the use of "sticks" to represent $\mathrm{C}-\mathrm{H}$ bonds in a structure should not be penalised. The exceptions will include structures in mechanisms when the $\mathrm{C}-\mathrm{H}$ bond is essential (e.g. elimination reactions in haloalkanes) and when a displayed formula is required.
- Some examples are given here of structures for specific compounds that should not gain credit

$\mathrm{CH}_{3} \mathrm{COH}$	for	ethanal
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HO}$	for	ethanol
$\mathrm{OHCH}_{2} \mathrm{CH}_{3}$	for	ethanol
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	for	ethanol
$\mathrm{CH}_{2} \mathrm{CH}_{2}$	for	ethene
$\mathrm{CH}_{2} \mathrm{CH}_{2}$	for	ethene
$\mathrm{CH}_{2} \mathrm{CH}_{2}$	for	ethene

N.B. Exceptions may be made in the context of balancing equations

- Each of the following should gain credit as alternatives to correct representations of the structures.

$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	for	ethene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$	for	propan-2-ol, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

J. Organic names

As a general principle, non-IUPAC names or incorrect spelling or incomplete names should not gain credit. Some illustrations are given here.

but-2-ol	should be butan-2-ol
2-hydroxybutane	should be butan-2-ol
butane-2-ol	should be butan-2-ol
2-butanol	should be butan-2-ol

ethan-1,2-diol
2-methpropan-2-ol
2-methylbutan-3-ol
3-methylpentan
3-mythylpentane
3-methypentane
propanitrile
aminethane
2-methyl-3-bromobutane
3-bromo-2-methylbutane
3-methyl-2-bromobutane
2-methylbut-3-ene
difluorodichloromethane

should be ethane-1,2-diol

should be 2-methylpropan-2-ol
should be 3-methylbutan-2-ol
should be 3-methylpentane
should be 3-methylpentane
should be 3-methylpentane
should be propanenitrile
should be ethylamine (although aminoethane can gain credit)
should be 2-bromo-3-methylbutane
should be 2-bromo-3-methylbutane
should be 2-bromo-3-methylbutane
should be 3-methylbut-1-ene
should be dichlorodifluoromethane
K. Additional sheets and blank clips

- Markers should mark all that is seen and carry on marking as normal. Clips which refer to the use of additional sheets should not be referred to the senior team. Clips which refer to other parts of the script must be referred to the senior team.
- When considering crossed out work, mark it as if it were not crossed out unless it has been replaced by a later version; this later version then takes priority.
- Mark a blank section with a dash (-) and not with a score of zero.

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

